
196

 KUNKUN: Journal of Multidisciplinary Research

E-ISSN : 3032-3150│P-ISSN : 3032-2812
Volume 2 No 3 September - December (2025)

https://ejournal.mediakunkun.com/index.php/kunkun│196

Analisis Optimasi Performa Game 3D Menggunakan Static
Batching Pada Unity Engine

Reza Putra Pradana1, Mas'ud Hermansyah2, Mochammad Rifki Ulil Albaab3, Ery
Setiyawan Jullev Atmadji4

Jurusan Teknologi Informasi, Politeknik Negeri Jember, Indonesia1,2,3,4

ABSTRACT

Game 3D membutuhkan pemrosesan grafis yang intensif,
terutama saat menampilkan banyak objek secara simultan. Salah
satu penyebab penurunan performa adalah tingginya jumlah
draw call, yang meningkatkan beban CPU dan menurunkan frame
rate. Penelitian ini bertujuan mengukur efektivitas metode Static
Batching dalam mengoptimalkan performa game 3D yang
dikembangkan menggunakan Unity Engine versi 2021.3.28f1 LTS.
Pengujian dilakukan pada perangkat HP Victus 15-fb0012AX
menggunakan dua skenario: baseline dan static batching enabled.
Parameter yang dianalisis meliputi draw call, frame rate (FPS),
waktu eksekusi CPU/GPU, dan penggunaan memori. Hasil
menunjukkan bahwa Static Batching mampu menurunkan draw
call sebesar 83,6%, meningkatkan FPS sebesar 31,7%, serta
menurunkan CPU Time dan GPU Time masing-masing sebesar
30,2% dan 29,0%. Namun, peningkatan memori sebesar 12%
menjadi konsekuensi yang perlu dipertimbangkan. Studi ini
menegaskan bahwa Static Batching efektif untuk optimasi
lingkungan game statis dan padat objek, serta memberikan
kontribusi pada pengembangan strategi optimasi grafis yang
efisien dalam skala produksi.

Keywords: Efektifitas, Static Batching, Unity, Optimasi, Draw Call.

Corresponding Author:
Reza Putra Pradana
(reza_pd@polije.ac.id)

Received: November 03, 2025
Revised: November 30, 2025
Accepted: December 05, 2025
Published: December 20, 2025

This work is licensed under a Creative
Commons Attribution-ShareAlike 4.0
International License.

1. PENDAHULUAN

Industri game global mengalami perkembangan paling cepat dibanding sektor hiburan
lainnya, dengan nilai pasar yang melampaui USD 184 miliar pada tahun 2024. Laporan dari
Newzoo menunjukkan bahwa pertumbuhan tersebut dipicu oleh penetrasi perangkat
mobile, konsol generasi baru, serta meningkatnya permintaan terhadap pengalaman
bermain yang lebih imersif. Selain itu, perkembangan teknologi grafis seperti real-time
rendering, ray tracing, dan machine-learning-assisted rendering telah mendorong kualitas
visual ke level yang semakin tinggi, namun sekaligus meningkatkan kebutuhan komputasi
secara signifikan.

Dalam lima tahun terakhir, dinamika industri game menunjukkan adanya pergeseran
model bisnis dari pembelian tradisional menuju sistem layanan seperti subscription gaming,
platformisasi konten, serta game sebagai layanan (Games-as-a-Service). Pergeseran ini
menuntut stabilitas performa lintas perangkat karena pemain mengharapkan pengalaman
konsisten pada PC, konsol, hingga laptop kelas menengah. Minat masyarakat terhadap
game juga meningkat secara signifikan, tidak hanya sebagai sarana hiburan, tetapi juga
kompetisi profesional (e-sports), media interaksi sosial, dan bahkan ruang ekonomi virtual.

Pertumbuhan basis pemain turut diiringi dengan peningkatan kompleksitas desain
game modern. Judul-judul besar saat ini memuat ribuan objek 3D dalam satu adegan, efek
partikel canggih, dan lingkungan dunia terbuka yang luas, sehingga meningkatkan tekanan

197

 KUNKUN: Journal of Multidisciplinary Research

E-ISSN : 3032-3150│P-ISSN : 3032-2812
Volume 2 No 3 September - December (2025)

https://ejournal.mediakunkun.com/index.php/kunkun│197

pada pipeline rendering. Salah satu masalah kinerja yang paling umum ditemukan adalah
tingginya jumlah draw call, yaitu instruksi yang dikirim CPU ke GPU untuk merender
setiap objek per frame. Ketika draw call terlalu banyak, CPU mengalami bottleneck,
mengurangi frame rate dan meningkatkan latensi rendering. Fenomena ini sangat kentara
pada perangkat menengah seperti laptop gaming entry-level atau mid-range GPU, di mana
optimalisasi menjadi faktor utama dalam menjaga pengalaman bermain tetap mulus.

Berbagai teknik optimasi telah dikembangkan untuk mengurangi draw call, seperti
Level of Detail (LOD), Occlusion Culling, Dynamic Batching, GPU Instancing, hingga
pendekatan Scriptable Render Pipeline (SRP). Di antara teknik tersebut, Static Batching
dianggap sebagai salah satu metode paling efektif untuk mengurangi beban CPU pada
game yang berisi banyak objek statis. Static Batching bekerja dengan menggabungkan objek
statis yang memiliki material identik menjadi satu mesh besar, sehingga jumlah draw call
yang dikirim CPU berkurang drastis. Beberapa studi menunjukkan bahwa pengurangan
draw call yang signifikan dapat meningkatkan FPS hingga lebih dari 20–40% pada
lingkungan padat objek.

Namun demikian, Static Batching memiliki keterbatasan. Penggabungan objek statis
menyebabkan duplikasi data dalam memori GPU, sehingga konsumsi memori meningkat.
Selain itu, teknik ini tidak cocok untuk objek dinamis, objek dengan animasi, atau objek
yang sering berubah transformasinya. Dengan demikian, meskipun Static Batching efektif,
penggunaannya harus mempertimbangkan spesifikasi perangkat, struktur level, jumlah
material, serta gaya bermain dari game yang dikembangkan.

Penelitian terkait optimasi grafis dalam Unity Engine terus bertambah dalam beberapa
tahun terakhir. Beberapa studi mengkaji dampak batching pada performa mobile, integrasi
metode batching dengan LOD, hingga pemanfaatan GPU Instancing untuk mengurangi
draw call tanpa menambah konsumsi memori. Namun, penelitian yang secara spesifik
menguji performa Static Batching pada perangkat laptop kelas menengah seperti HP Victus
15, terutama dengan versi Unity terbaru, masih terbatas.

Oleh karena itu, penelitian ini dilakukan untuk mengevaluasi efektivitas Static Batching
dalam meningkatkan performa game 3D pada Unity Engine 2021.3.28f1 LTS. Parameter
yang dianalisis meliputi FPS, draw call, CPU/GPU Time, dan penggunaan memori. Studi
ini diharapkan memberikan kontribusi nyata dalam literatur optimasi game serta memberi
panduan praktis bagi pengembang yang menargetkan performa optimal pada perangkat
laptop kelas menengah.

2. METODE
 Metode penelitian ini mengikuti alur kerja sistematis sebagaimana digambarkan dalam
diagram alur penelitian. Setiap tahap dirancang untuk menghasilkan evaluasi komprehensif
mengenai efektivitas metode Static Batching dalam meningkatkan performa game 3D yang
dikembangkan menggunakan Unity Engine. Tahapan tersebut meliputi identifikasi masalah
performa, studi literatur, pembuatan lingkungan 3D, konfigurasi batching, pengujian
performa melalui profilering, analisis hasil, hingga dokumentasi dan penyusunan publikasi
ilmiah. Seluruh tahapan tersebut dirancang agar dapat direplikasi oleh peneliti lain yang
melakukan eksperimen pada lingkungan serupa.

198

 KUNKUN: Journal of Multidisciplinary Research

E-ISSN : 3032-3150│P-ISSN : 3032-2812
Volume 2 No 3 September - December (2025)

https://ejournal.mediakunkun.com/index.php/kunkun│198

Gambar 1 Alur penelitian game optimization

Tahap pertama dimulai dengan identifikasi masalah performa yang umum terjadi pada
game 3D, khususnya tingginya jumlah draw call yang menjadi penyebab utama turunnya
FPS dan meningkatnya beban CPU. Observasi awal dilakukan pada proyek prototipe game
yang menunjukkan ketidakstabilan frame rate serta konsumsi memori yang meningkat
seiring bertambahnya jumlah objek statis dalam satu adegan. Pada tahap ini, dilakukan
pemetaan gejala performa seperti CPU bottleneck, GPU stall, dan fluktuasi frame time
sebagai dasar penentuan kebutuhan optimasi.
Tahap kedua adalah studi literatur untuk memahami konsep-konsep dasar seperti render
pipeline, draw call, Static Batching, Dynamic Batching, GPU Instancing, LOD, serta teknik
optimasi grafis yang relevan. Literatur dari jurnal internasional, whitepaper NVIDIA/AMD,
serta dokumentasi Unity digunakan untuk membangun landasan teori yang kuat. Studi
literatur ini juga berfungsi mengidentifikasi celah penelitian, yaitu kurangnya kajian empiris
yang menguji Static Batching pada perangkat kelas menengah dengan pengukuran metrik
performa yang terstruktur.
Tahap ketiga adalah pembangunan lingkungan 3D dan persiapan aset game. Lingkungan
pengujian dibuat menggunakan Unity 2021.3.28f1 LTS dengan menyusun 440 objek statis
berupa pohon dan batu dalam satu area permainan. Pemodelan objek dilakukan secara low-
poly untuk menjaga efisiensi GPU, sementara material dibuat sesedikit mungkin agar
kompatibel dengan Static Batching. Pada tahap ini, perhatian diberikan pada aspek seperti
pengaturan skala objek, distribusi spasial, dan keseragaman material. Lingkungan dibuat
semirip mungkin dengan kondisi game dunia nyata yang memuat banyak objek visual.

Gambar 2. Proses Pembuatan 3D model

Tahap keempat mencakup implementasi Static Batching dan skenario pembanding. Dua
versi aplikasi dibuat: versi baseline tanpa Static Batching dan versi optimasi dengan Static

199

 KUNKUN: Journal of Multidisciplinary Research

E-ISSN : 3032-3150│P-ISSN : 3032-2812
Volume 2 No 3 September - December (2025)

https://ejournal.mediakunkun.com/index.php/kunkun│199

Batching diaktifkan. Pada versi optimasi, semua objek statis ditandai sebagai Static, dan
Unity menggabungkannya menjadi batch besar pada proses build. Pengaturan kualitas
grafis, jarak rendering, dan lighting dibuat identik pada kedua skenario untuk memastikan
perbedaan performa hanya disebabkan oleh perlakuan batching.
Tahap kelima adalah pengukuran performa menggunakan alat profilering profesional.
Setiap skenario dijalankan pada perangkat HP Victus 15-fb0012AX dengan CPU Ryzen 7
5800H dan GPU RTX 3050 Ti. Pengujian berlangsung selama 180 detik dan diulang tiga kali
untuk memperoleh konsistensi data. Unity Profiler digunakan untuk mencatat jumlah draw
call, CPU Time, dan GPU Time, sedangkan NVIDIA FrameView digunakan untuk mencatat
FPS dan konsumsi memori. Hasil dari ketiga putaran pengujian dirata-rata untuk
mengurangi bias dan memastikan reliabilitas.

Gambar 3. Statistik run time game scene

Tahap keenam adalah analisis efisiensi performa, yang dilakukan dengan menerapkan
rumus-rumus kuantitatif seperti Draw Call Reduction (%), FPS Improvement (%),
CPU/GPU Time Reduction (%), dan Memory Ratio (MR). Analisis ini bertujuan untuk
mengukur dampak langsung Static Batching terhadap pipeline rendering. Selain analisis
numerik, dilakukan pula interpretasi kualitatif untuk memahami perubahan performa dari
perspektif arsitektur rendering, seperti penurunan beban CPU akibat berkurangnya
instruksi per frame.
Tahap ketujuh adalah evaluasi hasil dan pembahasan implikasi optimasi. Evaluasi
dilakukan dengan membandingkan hasil pengujian kedua skenario dan menentukan sejauh
mana Static Batching efektif digunakan. Peningkatan FPS dan penurunan CPU/GPU Time
dianggap sebagai indikator keberhasilan, sedangkan peningkatan penggunaan memori
dianalisis sebagai bentuk trade-off. Evaluasi ini juga membandingkan temuan penelitian
dengan literatur untuk memperkuat validitas kesimpulan.
Tahap terakhir mencakup penyusunan dokumentasi, pembuatan laporan ilmiah, dan proses
publikasi. Dokumentasi teknis berisi catatan implementasi, konfigurasi aset, dan pengaturan
profilering. Seluruh temuan dirangkum dalam format artikel ilmiah sesuai standar
publikasi. Tahap ini memastikan bahwa penelitian tidak hanya menghasilkan data empiris,
tetapi juga memberikan kontribusi nyata dalam bidang optimasi game.

3. HASIL DAN PEMBAHASAN

Hasil penelitian ini menunjukkan keberhasilan implementasi alur optimasi
menggunakan metode Static Batching dalam meningkatkan performa rendering pada
lingkungan game 3D berbasis Unity. Seluruh tahapan eksperimen, mulai dari pembuatan
skenario pengujian, konstruksi adegan 3D, proses aktivasi batching, pengukuran performa,
hingga analisis komparatif, menghasilkan temuan yang konsisten bahwa Static Batching
memberikan kontribusi signifikan terhadap peningkatan efisiensi rendering. Sistem yang

200

 KUNKUN: Journal of Multidisciplinary Research

E-ISSN : 3032-3150│P-ISSN : 3032-2812
Volume 2 No 3 September - December (2025)

https://ejournal.mediakunkun.com/index.php/kunkun│200

telah dioptimasi menghasilkan jumlah draw call yang jauh lebih rendah, peningkatan FPS
yang stabil, serta penurunan waktu pemrosesan CPU dan GPU yang menunjukkan
pengurangan beban pada pipeline rendering.

Tahap awal penelitian yang melibatkan pembangunan lingkungan 3D merupakan
fondasi penting dalam menghasilkan data yang dapat diuji secara konsisten. Sebanyak 440
objek statis berupa pohon dan bebatuan ditempatkan secara merata pada satu area
permainan untuk mensimulasikan adegan dengan kepadatan visual tinggi. Seluruh objek
menggunakan material yang sama agar memenuhi syarat untuk proses batching.
Lingkungan ini secara khusus dirancang untuk menghasilkan CPU-bound scenario, yakni
kondisi di mana CPU mengalami tekanan tinggi akibat pengiriman draw call dalam jumlah
besar. Kondisi ini sangat cocok untuk menguji efektivitas metode Static Batching yang
secara teori memang ditujukan untuk mengurangi jumlah instruksi rendering.

Gambar 4. Analisis Adegan dan Konfigurasi Pengujian Rendering

Setelah skenario baseline dikonstruksi, pengujian awal dilakukan untuk mencatat
performa dasar tanpa optimasi. Hasil benchmark menunjukkan bahwa adegan
menghasilkan 1021 draw call, FPS rata-rata 41, CPU Time sebesar 18,2 ms, dan GPU Time
sebesar 22,4 ms. Hasil ini mengindikasikan bahwa adegan mengalami bottleneck pada CPU,
di mana pengiriman instruksi rendering menjadi faktor utama penurunan performa.
Kondisi baseline ini selanjutnya digunakan sebagai pembanding langsung untuk
mengevaluasi dampak dari Static Batching.

Implementasi Static Batching dilakukan pada tahap berikutnya dengan melakukan
penandaan objek sebagai Static serta mengaktifkan fitur batching pada Unity. Selama proses
build, Unity memetakan objek-objek statis tersebut dan menggabungkannya ke dalam
kelompok mesh besar. Setelah proses batching selesai, versi aplikasi yang telah dioptimasi
dijalankan kembali dalam kondisi pengujian yang identik. Seperti terlihat pada Gambar 4
dan Tabel 1, metode ini memberikan hasil yang sangat signifikan. Draw call menurun
drastis dari 1021 menjadi 167 (penurunan 83,6%). FPS meningkat dari 41 menjadi 54,
menunjukkan kenaikan 31,7%. Waktu pemrosesan CPU dan GPU masing-masing turun
sebesar 30,2% dan 29,0%.

Tabel 1. Perbandingan Performa Rendering Baseline dan Static Batching

Kategori Pengujian Baseline
Static

Batching
Perubahan Kesimpulan

Draw Call 1021 167 –83,6%
Beban CPU sangat
berkurang

Rata-rata FPS 41 54 31,70% Performa meningkat

201

 KUNKUN: Journal of Multidisciplinary Research

E-ISSN : 3032-3150│P-ISSN : 3032-2812
Volume 2 No 3 September - December (2025)

https://ejournal.mediakunkun.com/index.php/kunkun│201

signifikan

CPU Time 18,2 ms 12,7 ms –30,2% Bottleneck CPU berkurang

GPU Time 22,4 ms 15,9 ms –29,0% Rendering lebih efisien

Penggunaan
Memori

612 MB 686 MB 12,10%
Trade-off memori dapat
diterima

Selain peningkatan performa rata-rata, dilakukan pula stress testing untuk mengamati

responsivitas adegan terhadap kondisi rendering ekstrem seperti pergerakan kamera cepat,
perubahan jarak pandang, dan pengaktifan efek visual tambahan. Pada 201rastic201
baseline, pergerakan kamera menimbulkan frame-time spikes atau lonjakan waktu render
yang menyebabkan stuttering. Sebaliknya, pada versi Static Batching, frame-time jauh lebih
stabil dan tidak menunjukkan penurunan performa 201rastic, menegaskan bahwa batching
tidak hanya meningkatkan FPS, tetapi juga meningkatkan konsistensi frame.

Pengujian lanjutan juga dilakukan untuk menilai overhead memori dan pengaruhnya

terhadap performa keseluruhan. Tabel 2 merangkum hasil evaluasi ini. Peningkatan memori
sebesar 12,1% bersifat wajar mengingat Unity menggandakan data mesh untuk proses
batching. Meskipun membutuhkan memori tambahan, peningkatan FPS dan penurunan
waktu pemrosesan jauh melebihi konsekuensi tersebut sehingga Static Batching tetap dapat
dianggap efisien secara keseluruhan.

Tabel 2. Evaluasi GPU dan Overhead Memori

Metrik Baseline
Static

Batching
Interpretasi

VRAM 612 MB 686 MB Kenaikan akibat mesh buffering

Jumlah Mesh 442 5 Batch menggabungkan objek

Stabilitas Frame 85% 92% Berkurangnya stuttering

Sinkronisasi CPU–GPU 18,2ms 12,7ms Beban CPU menurun drastis

Hasil penelitian ini menunjukkan bahwa penerapan Static Batching pada proyek game

3D berbasis Unity memberikan manfaat signifikan dalam mengoptimalkan kinerja render
pipeline. Salah satu temuan terpenting adalah penurunan draw call yang sangat besar, yang
berfungsi sebagai faktor utama peningkatan performa. Dengan berkurangnya instruksi
rendering yang dikirim ke GPU, CPU memiliki lebih banyak ruang untuk menangani proses
game lainnya, sehingga mengurangi bottleneck yang sebelumnya membatasi FPS.

Penurunan CPU Time sebesar 30,2% konsisten dengan literatur yang menyatakan
bahwa Static Batching sangat efektif pada adegan dengan banyak objek statis. Hal ini
memperkuat bahwa optimasi berbasis batch adalah salah satu solusi paling efisien untuk
game berlingkungan padat seperti simulasi, RPG, dan eksplorasi dunia terbuka. Di sisi
GPU, penurunan waktu pemrosesan sebesar 29% mengindikasikan bahwa batching juga
membantu pipeline GPU untuk bekerja lebih efisien dengan data yang lebih terstruktur.

Walaupun memberikan peningkatan performa, Static Batching memiliki konsekuensi
berupa kenaikan penggunaan memori. Mesh yang digabungkan harus disimpan kembali
sebagai batch besar sehingga menambah beban VRAM. Namun hasil penelitian
menunjukkan bahwa peningkatan ini masih dalam batas wajar dan tidak berdampak negatif
pada gameplay. Pada perangkat dengan keterbatasan memori (misalnya smartphone kelas
bawah), pengembang perlu menyeimbangkan penggunaan batching dengan teknik lain
seperti GPU Instancing atau LOD.

Stabilitas frame juga merupakan kontribusi penting dari Static Batching. Dalam
pengujian stress, adegan baseline mengalami penurunan stabilitas frame, sedangkan versi
batching tetap stabil dan responsif. Hal ini sangat penting dalam skenario gameplay cepat,

202

 KUNKUN: Journal of Multidisciplinary Research

E-ISSN : 3032-3150│P-ISSN : 3032-2812
Volume 2 No 3 September - December (2025)

https://ejournal.mediakunkun.com/index.php/kunkun│202

di mana gangguan kecil seperti stuttering dapat mengurangi kenyamanan dan responsivitas
pemain.

Meskipun demikian, teknik ini tidak cocok untuk semua jenis objek. Objek yang
bergerak, berubah skala, atau mengalami transformasi sering tidak dapat dibatch. Oleh
karena itu, pengembang harus mengkombinasikan Static Batching dengan teknik lain
seperti Dynamic Batching, GPU Instancing, dan culling agar performa tetap optimal dalam
berbagai kondisi.

Secara keseluruhan, Static Batching terbukti sebagai teknik optimasi yang kuat,
terutama untuk lingkungan statis dengan jumlah objek besar. Peningkatan performa tercatat
secara konsisten di berbagai parameter, menunjukkan bahwa metode ini sangat layak untuk
diadopsi oleh pengembang game yang ingin meningkatkan performa game tanpa
mengorbankan kualitas visual. Penelitian ini juga membuka peluang untuk eksplorasi
lanjutan, seperti menguji batching pada skala adegan lebih besar, menggabungkan teknik
optimasi lain, atau mengevaluasi performa pada perangkat mobile kelas rendah.

4. KESIMPULAN

Penelitian ini berhasil menunjukkan bahwa metode Static Batching pada Unity Engine
merupakan teknik optimasi yang efektif untuk meningkatkan performa rendering pada
game 3D dengan jumlah objek statis yang besar. Melalui pengujian terkontrol pada dua
skenario—baseline dan Static Batching—terbukti bahwa optimasi ini secara konsisten
menurunkan jumlah draw call, meningkatkan FPS, serta mengurangi waktu pemrosesan
CPU dan GPU. Seluruh proses pengujian berjalan stabil dan menghasilkan data yang dapat
direplikasi, menegaskan keandalan metode ini dalam konteks pengembangan game.

Selain peningkatan performa, Static Batching juga terbukti mampu menjaga stabilitas
visual dan responsivitas frame, terutama pada kondisi stress testing yang menuntut banyak
perubahan sudut pandang dan pemrosesan adegan secara cepat. Meskipun terdapat
peningkatan penggunaan memori akibat duplikasi mesh dalam batching, efek tersebut
relatif kecil dan tidak mempengaruhi kelancaran permainan. Dengan demikian, teknik ini
dapat dianggap sebagai solusi optimasi yang ringan, praktis, dan kompatibel untuk
berbagai perangkat, termasuk laptop kelas menengah.

Secara keseluruhan, penelitian ini menegaskan bahwa Static Batching adalah
pendekatan yang layak diterapkan oleh pengembang game yang ingin meningkatkan
efisiensi rendering tanpa melakukan perubahan signifikan pada aset atau desain adegan.
Penelitian selanjutnya disarankan untuk mengeksplorasi integrasi Static Batching dengan
teknik optimasi lainnya seperti GPU Instancing, LOD, atau SRP Batching, serta pengujian
pada platform yang lebih beragam seperti mobile atau VR. Pendekatan lanjutan ini
diharapkan dapat menghasilkan strategi optimasi yang lebih komprehensif dan adaptif
terhadap berbagai kebutuhan pengembangan game modern.

DAFTAR PUSTAKA
AMD, “Real-Time Rendering Advances,” Whitepaper, 2023.
ARM, “Mobile GPU Best Practices,” Whitepaper, 2023.
Bai, D. & Kim, Y., “E-sports industry and economic growth,” Journal of Economic

Structures, 2022.
Boston Consulting Group (BCG), “Future of the Global Gaming Industry,” 2024.
Deloitte, “Digital Media Trends Report,” 2023.
Göhringer, J. et al., “Performance behaviour of batching techniques,” Eurographics Short

Papers, 2023.
HP, “Victus 15 Gaming Performance Profile,” 2023.
Intel, “CPU Bottleneck Analysis in Real-Time Rendering,” Technical Guide, 2024.
Intel, “Memory Overhead in Batched Mesh Rendering,” 2021.

203

 KUNKUN: Journal of Multidisciplinary Research

E-ISSN : 3032-3150│P-ISSN : 3032-2812
Volume 2 No 3 September - December (2025)

https://ejournal.mediakunkun.com/index.php/kunkun│203

Koulaxidis, G. & Xinogalos, S., “Improving mobile game performance with optimization
techniques in Unity,” Modelling, 3(2), 2022. DOI: 10.3390/modelling3020014

Liu, Y. et al., “LOD-driven optimization in heavy 3D scenes,” Visual Computer, 2023. DOI:
10.1007/s00371-023-02678-0

Martínez, R., “Static batching performance implications,” GameDev Guru, 2023.
Meta/Oculus, “Rendering Optimization for VR,” 2024.
Neto, F. et al., “Quantifying frame-time variance in mobile games,” ACM MMSys, 2024.

DOI: 10.1145/3641234
Newzoo, “Global Games Market Report 2024,” 2024.
NVIDIA, “Mesh Optimization Strategies,” Technical Notes, 2023.
NVIDIA, “RTX Real-Time Ray Tracing Overview,” Technical Report, 2022.
Qiu, J., Gong, H., & Liu, X., “User behavior analysis and clustering in MMO mobile games,”

ACM CHI Workshops, 2024. DOI: 10.48550/arXiv.2407.11772
Rahman, S. et al., “Evaluating GPU instancing for large-scale 3D environments,” Computers

& Graphics, 2022. DOI: 10.1016/j.cag.2022.05.014
Unity Manual, “Static Batching Implementation Details,” 2023.
Unity Technologies, “Draw Call Optimization Manual,” 2023.
Unity Technologies, “Unity Rendering Pipeline Overview,” Documentation, 2023.
Van Crombrugge, M. et al., “The rise of the subscription model in the video game industry,”

Journal of Business Research, 2025. DOI: 10.1016/j.jbusres.2025.114512
Wang, J. et al., “Optimization of mobile games using batching & instancing,” IEEE Access,

2021. DOI: 10.1109/ACCESS.2021.3051234
Welden, L. et al., “How retailers and brands thrive in the video game ecosystem,” Journal of

Retailing, 2025. DOI: 10.1016/j.jretai.2025.03.004

