Comparison of K-Means and K-Medoids Algorithms in Students English Skill Clasterization

Main Article Content

Masud Hermansyah
Difari Afreyna Fauziah
Iqbal Sabilirrasyad
M. Faiz Firdausi
Abdul Wahid

Abstract

Students who have the ability to speak English well can communicate their ideas and ideas in the school environment or with foreigners. English proficiency is not only the ability to speak, but also the ability to understand and produce spoken or written texts which are realized in the four language skills namely listening, speaking, reading and writing. With data mining technology, it is possible to analyze the value of students' English skills. This analysis was carried out by grouping students according to their ability scores in the four skills. In conducting this research, a comparison of the K-Means and K-Medoids clustering methods was used to classify students' English abilities. With the clustering technique, it is hoped that the teacher can adjust the learning model according to the abilities of the students. The purpose of this study is to analyze and process data by comparing the K-Means and K-Medoids methods in clustering English skills scores. Based on the research that has been done, when compared to the K-Means method with K-Medoids, the K-Medoids method is more optimal in terms of the lowest Davies Boldin Index (DBI) value of 0.287 at k=3.

Downloads

Download data is not yet available.

Article Details

How to Cite
Masud Hermansyah, Difari Afreyna Fauziah, Iqbal Sabilirrasyad, M. Faiz Firdausi, & Abdul Wahid. (2024). Comparison of K-Means and K-Medoids Algorithms in Students English Skill Clasterization. LOREM: Computational Engineering and Computer Information Systems, 1(1), | Page 12-20. https://ejournal.mediakunkun.com/index.php/lorem/article/view/17
Section
Articles

How to Cite

Masud Hermansyah, Difari Afreyna Fauziah, Iqbal Sabilirrasyad, M. Faiz Firdausi, & Abdul Wahid. (2024). Comparison of K-Means and K-Medoids Algorithms in Students English Skill Clasterization. LOREM: Computational Engineering and Computer Information Systems, 1(1), | Page 12-20. https://ejournal.mediakunkun.com/index.php/lorem/article/view/17

References

Agustina, S., Yhudo, D., Santoso, H., Marnasusanto, N., Tirtana, A., & Khusnu, F. (2012). Clustering Kualitas Beras Berdasarkan Ciri Fisik Menggunakan Metode K-Means. Clustering K-Means, 1–7.

Dacwanda, D. O., & Nataliani, Y. (2021). Implementasi k-Means Clustering untuk Analisis Nilai Akademik Siswa Berdasarkan Nilai Pengetahuan dan Keterampilan. Aiti : Jurnal Teknologi Informasi, 18(2), 125–138. https://doi.org/10.24246/aiti.v18i2.125-138

Farid, M., Tanasal, A. A., Puli, A. R. F. A., Alamin, R. L., & Renaldi. (2022). Program English Area : Upaya Meningkatkan Kemampuan Berbahasa Inggris Siswa SMK. Jurnal Lepa-Lepa Open, 2(5), 1291–1299.

Febrianti, E., Sembiring, R. W., & Suhada, D. (2019). Mengkluster Jumlah Kabupaten/Kota Yang Melaksanakan Kawasan Tanpa Rokok (KTR) Di 50% Sekolah Menurut Provinsi Dengan K-Medoids. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 637–644. https://doi.org/10.30865/komik.v3i1.1672

Harahap, B. (2019). Penerapan Algoritma K-Means Untuk Menentukan Bahan Bangunan Laris (Studi Kasus Pada UD. Toko Bangunan YD Indarung). Regional Development Industry & Health Science, Technology and Art of Life, 394–403.

Harahap, P. N., & Sulindawaty, S. (2019). Implementasi Data Mining Dalam Memprediksi Transaksi Penjualan Menggunakan Algoritma Apriori (Studi Kasus PT.Arma Anugerah Abadi Cabang Sei Rampah). MATICS: Jurnal Ilmu Komputer Dan Teknologi Informasi, 11(2), 46–50. https://doi.org/10.18860/mat.v11i2.7821

Hermansyah, M., Hamdan, R. A., Sidik, F., & Wibowo, A. (2020). Klasterisasi Data Travel Umroh di Marketplace Umroh.com Menggunakan Metode K-Means. Jurnal Ilmu Komputer, 13(2), 8. https://doi.org/10.24843/jik.2020.v13.i02.p06

Hermansyah, M., Prasetyo, N. A., Ansori, Y., FIrdausi, M. F., & Wahid, A. (2023). Implementation of K-Means Clustering for Analysis Students English Proficiency. Journal of Education Science and Technology, 1(6), 31–35.

Mahartika, I. R., & Wibowo, A. (2019). Data Mining Klasterisasi dengan Algoritme K-Means untuk Pengelompokkan Provinsi Berdasarkan Konsumsi Bahan Bakar Minyak Nasional. Prosiding Seminar Nasional Sisfotek.

Muliono, R., & Sembiring, Z. (2019). Data Mining Clustering Menggunakan Algoritma K-Means Untuk Klasterisasi Tingkat Tridarma Pengajaran Dosen. CESS (Journal of Computer Engineering, System and Science), 4(2), 2502–2714.

Rahmah, E., Haerani, E., Nazir, A., & Ramadhani, S. (2022). Penerapan Algoritma K-Medoids Clustering Untuk Menentukan Srategi Promosi Pada Data Mahasiswa (Studi Kasus : Stikes Perintis Padang). Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 5(3), 556–564. https://doi.org/10.32672/jnkti.v5i3.4355

Rohmawati, N., Defiyanti, S., & Jajuli, M. (2015). Implementasi Algoritma K-Means Dalam Pengklasteran Mahasiswa Pelamar Beasiswa. Jitter : Jurnal Ilmiah Teknologi Informasi Terapan, I(2), 62–68.

Silalahi, M., Purba, A., Benarita, B., Matondang, M. K. ., Sipayung, R. W., Silalahi, T. F., Saragih, N., Girsang, S. E., Damanik, I. J., & Sibuea, B. (2022). Analisis Kesulitan Belajar Bahasa Inggris Siswa Sma Negeri 1 Narumonda Kabupaten Tobasa. Community Development Journal : Jurnal Pengabdian Masyarakat, 3(2), 728–732. https://doi.org/10.31004/cdj.v3i2.4686

Tambusai, A., & Nasution, K. (2022). Tingkat Pemahaman Bahasa Inggris Bagi Siswa Sekolah Menegah Atas (SMA). Jurnal Pema Tarbiyah, 1(1), 44–53.

Wira, B., Budianto, A. E., & Wiguna, A. S. (2019). Implementasi Metode K-Medoids Clustering untuk Mengetahui Pola Pemilihan Program Studi Mahasiswa Baru Tahun 2018 di Universitas Kanjuruhan Malang. Jurnal Terapan Sains & Teknologi, 1(3), 54–69.

Wiranto, F., Rohim, M. A., Firdausi, M. F., Muliawan, A., & Afrianto, E. (2023). Optimizing Coffee Crop Selection for Plant-Ready Coffee Fields : A Study Using the “ Predict . in ” Decision Support System at the Coffee and Cocoa Research Center in Jember. 6(1), 42–47.

Wiranto, F., Sabilirrasyad, I., Hermansyah, M., Mandala, S., Wiranto, F., & Mandala, S. (2023). Optimizing Forecasting of Dow Jones Stock Index in New York amid Uncertain Global Conditions in 2023 : A Combined Approach of ARIMA and Machine Learning Models. 1, 73–88.