Classification of Student Readiness for Educational Unit Exams: Decision Tree Approach C4.5 Based on Try Out Scores at MTs Nahdlatul Arifin
Main Article Content
Abstract
The National Examination, which has now changed to an Educational Unit Examination which is held every year by the Government, has become the school's concentration in preparation for it. In this case, each school has its own way of preparing students to be ready to face the Education Unit Examination. Classifying students in readiness for the Educational Unit Examination is one way for the school to do so. MTs Nahdlatul Arifin is one of the schools that implements this. Classifying students based on the scores from the Try Out results held by the school is a method carried out by MTs Nahdlatul Arifin. Along with advances in technology, classifying student grades can be done using Data Mining with several algorithms. However, in this research a comparison of several algorithms has been carried out. Compared with the Weka tools, the C4.5 algorithm was finally chosen for this research. The number of classifications carried out with correct results on a total of 100 student data is 20 + 33 + 39 = 92 and the number of classifications carried out with incorrect results is 2 + 2 + 4 = 8. So the accuracy of this model is (92/100) = 0.92 or 92%.
Downloads
Article Details
How to Cite
References
Adiya, M. H., & Desnelita, Y. (2019). Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru. Jurnal Nasional Teknologi Dan Sistem Informasi, 01, 17–24.
Andika, L. A., Azizah, P. A. N., & Respatiwulan, R. (2019). Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier. Indonesian Journal of Applied Statistics, 2(1), 34. https://doi.org/10.13057/ijas.v2i1.29998
Astuti, R. (2018). Data Mining untuk Klasifikasi dengan Algoritma Cart (Classification and Regression Trees). Media Informatika, 17(3), 114–124. https://doi.org/10.37595/mediainfo.v17i3.15
Budiman, I., Muliadi, & Ramadina, R. (2015). Penerapan Fungsi Data Mining Klasifikasi untuk Prediksi Masa Studi Mahasiswa Tepat Waktu pada Sistem Informasi Akademik Perguruan Tinggi. Jurnal Jupiter, 7(1).
Darmawan, I., Rachmatullah, S., Ariyanto, S. V., Hari, N. H., & Rohman, A. F. (2022). Implementasi Metode Clustering Pada Data Penerimaan Siswa Baru Menggunakan Algoritma K – Mean (Studi Kasus SMK Darul Falah Kertagena Tengah). Insand Comtech : Information Science and Computer Technology Journal, 7(2). https://doi.org/10.53712/jic.v7i2.1679
Dewi, S. (2016). Komparasi 5 Metode Algoritma Klasifikasi Data Mining Pada Prediksi Keberhasilan Pemasaran Produk Layanan Perbankan. Jurnal Techno Nusa Mandiri, XIII(1), 60–66.
Indriani, A. (2014). Klasifikasi Data Forum dengan menggunakan Metode Naïve Bayes Classifier. Seminar Nasional Aplikasi Teknologi Informasi (SNATI), 5–10.
Iskandar, M., Rochman, A., Ratnawati, D. E., & Anam, S. (2019). Penerapan Algoritme C4 . 5 untuk Klasifikasi Fungsi Senyawa Aktif Menggunakan Kode Simplified Molecular Input Line System ( SMILES ). Jurnal Pengetahuan Teknologi Informasi Dan Ilmu Komputer, 3(1), 761–769.
Julianto, W., Yunitarini, R., & Sophan, M. K. (2014). Algoritma C4.5 untuk Penilaian Kinerja Karyawan. SCAN, IX, 33–39.
Lumbantoruan, R., & Kennedy, P. S. J. (2015). Analisis Data Mining dan Warehousing. Jurnal Ilmiah Buletin Ekonomi, 19(1), 66–76.
Mahartika, I. R., & Wibowo, A. (2019). Data Mining Klasterisasi dengan Algoritme K-Means untuk Pengelompokkan Provinsi Berdasarkan Konsumsi Bahan Bakar Minyak Nasional. Prosiding Seminar Nasional Sisfotek.
Muliawan, A., Fauziyah, D. A., Hermansyah, M., & Wiranto, F. (2023). Implementation and Testing of a Website Based New Student Admission System at Vocational High School Visi Global Jember. 6(1), 14–19.
Pambudi, R. H., Setiawan, B. D., & Indriati. (2018). Penerapan Algoritma C4 . 5 Untuk Memprediksi Nilai Kelulusan Siswa Sekolah Menengah Berdasarkan Faktor Eksternal. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(7), 2637–2643.
Rahmatullah, M. (2016). Kemampuan Mengajar Guru dalam Meningkatkan Kinerja Guru dan Hasil Belajar Siswa. Jurnal Penelitian Manajemen Pendidikan, 1(2), 119–126.
Rahmayuni, I. (2014). Perbandingan Performansi Algoritma C4.5 dan Cart Dalam Klasifikasi Data Nilai Mahasiswa Prodi Teknik Komputer Politeknik Negeri Padang. Teknoif, 2(1), 40–46.
Rosandy, T. (2016). Perbandingan Metode Naive Bayes Classifier dengan Metode Decision Tree (C4.5) untuk Menganalisa Kelancaran Pembiayaan. Jurnal Teknologi Informasi Magister Darmajaya, 2(01), 52–62.
Rusito, & Firmansyah, M. T. (2016). Implementasi Metode Decision Tree dan Algoritma C4.5 untuk Klasifikasi Data Nasabah Bank. INFOKOM, 1(12).
Setio, P. B. N., Saputro, D. R. S., & Winarno, B. (2020). Klasifikasi dengan Pohon Keputusan Berbasis Algoritme C4.4. Prosiding Seminar Nasional Matematika, 3, 64–71.
Siregar, M. H. (2018). Data Mining Klasterisasi Penjualan Alat-Alat Bangunan Menggunakan Metode K-Means (Studi Kasus Di Toko Adi Bangunan). Jurnal Teknologi Dan Open Source, 1(2), 83–91. https://doi.org/10.36378/jtos.v1i2.24
Sokolova, M., & Lapalme, G. (2009). A Systematic Analysis of Performance Measures for Classification Tasks. Information Processing and Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002
Yang, S., & Berdine, G. (2017). The Receiver Operating Characteristic ( ROC ) Curve. The Southwest Respiratory and Critical Care Chronicles, 5(19), 34–36. https://doi.org/10.12746/swrccc.v5i19.391