Implementation of Trend Moment Method in Gasoline Stock Forecasting (Case Study : SPBU Rest Area 25 - Sidoarjo)
Main Article Content
Abstract
Sales Forecasting is the activity of estimating products to be sold at a future time under certain circumstances and is made based on data that has occurred and or is unlikely to occur. One of the forecasts needed is gasoline stock forecasting carried out at Rest Area 25 Gas Station - Sidoarjo. The purpose of this study is to determine how fuel sales forecasting with the use of the Trend Moment Method in the Rest Area 25 - Sidoarjo gas station case study can help predict uncertain fuel demand. Data collection techniques used observation, documentation and literature study methods and data analysis techniques are quantitative data. The data used in this study is gasoline sales data in 2017-2018. Implementation of the program using the VB programming language. NET programming language and SQL Server. The results of this study obtained an average error value using APE of 18.63% with an accuracy of 81.36% which is good value
Downloads
Article Details
How to Cite
References
Agustine, A. (2017). FORECASTING FITNESS GYM MEMBERSHIP PADA PUSAT KEBUGARAN “THE BODY ART FITNESS,AEROBIC & POOL” MENGGUNAKAN METODE EXPONENTIAL SMOOTHING. MATHunesa: Jurnal Ilmiah Matematika, 5(3), Article 3. https://ejournal.unesa.ac.id
Asnal, H., Sani, N., Anam, M. K., Erlinda, S., & Jamaris, M. (2022). SISTEM MONITORING PERSEDIAAN STOK ONDERDIL MENGGUNAKAN METODE REORDER POINT PADA SANI COMPUTER. JSR : Jaringan Sistem Informasi Robotik, 6(2), 305.
Fauziah, D. A., Muliawan, A., & Dimyati, M. (2023). Measuring Quality of E-learning Websites Using WebQual 4.0 Method in Higher Education (Case Study: Institute Technology and Science Mandala). INSIDE - Jurnal Sistem Informatika Cerdas, 1(2), Article 2.
Fauziah, D. A., Muliawan, A., & Rohim, M. A. (2023). Stock Price Prediction of PT. Jasa Marga (Persero) Tbk Using Linear Regression Algorithm. PROCEEDING INTERNATIONAL CONFERENCE ON ECONOMICS, BUSINESS AND INFORMATION TECHNOLOGY (ICEBIT), 4, 810–815.
Hermansyah, M., Fauziah, D. A., & Muliawan, A. (2023). Decision Support System for Identifying Best Students in the Class with Simple Additive Weighting (SAW) Method. INSIDE - Jurnal Sistem Informatika Cerdas, 1(1), Article 1.
Hermansyah, M., Sabilirrasyad, I., Muliawan, A., & Prasetyo, N. A. (2023). Improving Accessibility and Quality of Posyandu Services through a Website—Based Information System in Support of SDGs. Progress Conference, 6(1), Article 1.
Isa, I. G. T., & Hartawan, G. (2017). Perancangan Aplikasi Koperasi Simpan Pinjam Berbasis Web (Studi Kasus Koperasi Mitra Setia).
Muliawan, A., Badriyah, T., & Syarif, I. (2022). Membangun Sistem Rekomendasi Hotel dengan Content Based Filtering Menggunakan K-Nearest Neighbor dan Haversine Formula. Technomedia Journal, 7, 231–247. https://doi.org/10.33050/tmj.v7i2.1893
Muliawan, A., Fauziyah, D. A., Hermansyah, M., Wiranto, F., & Sabilirrayad, I. (2023). Implementation and Testing of a Website Based New Student Admission System at Vocational High School Visi Global Jember. Progress Conference, 6(1), Article 1.
Sabilirrasyad, I., Hermansyah, M., Muliawan, A., Wahid, A., & Rakhmawati, R. (2023). Strengthening the Economy and Competitiveness of MSMEs in Jelbuk Village, Jelbuk Sub-District Through MSME Digitization. Progress Conference, 6(1), Article 1.
Safitri, A. N., & Sianturi, F. A. (2021). Analisa Metode Trend Moment Untuk Peramalan Penjualan Stok Barang Pada Toko Sun Oleh-Oleh.
Ulfa, U., Sumijan, & Nurcahyo, G. W. (2019). Peramalan Penjualan Pupuk Menggunakan Metode Trend Moment. Jurnal Informatika Ekonomi Bisnis, 8–14. https://doi.org/10.37034/infeb.v1i4.4
Wiranto, F., Sabilirrasyad, I., Hermansyah, M., Mandala, S., Wiranto, F., & Mandala, S. (2023). Optimizing Forecasting of Dow Jones Stock Index in New York amid Uncertain Global Conditions in 2023 : A Combined Approach of ARIMA and Machine Learning Models. 1, 73–88.
Zoromi, F., Sitorus, S. I. Y., Anam, M. K., Lestari, T. P., & Yumami, E. (2023). Prediksi dan Visualisasi Data Tingkat Kebutuhan Minyak dan Gas (MIGAS) PT. Prima Putra Agung dengan Metode Trend Projection. Jurnal Rekayasa Teknologi Informasi (JURTI), 7(1), 19. https://doi.org/10.30872/jurti.v7i1.11266